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intend to describe other methods of investigation of local 
and global geometrical/topological properties of M 3 and 
a l s o  to  i l lus t ra te  e a c h  o f  the s u g g e s t e d  m e t h o d s  by 
e x a m p l e s  o f  the c r y s t a l - c h e m i c a l  a n a l y s i s  o f  v a r i o u s  

c l a s s e s  o f  s u b s t a n c e s  and  s o m e  m o d e l  s y s t e m s .  
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Abstract 

A description is given of 4-connected nets with one kind 
of vertex in which at least three of the shortest rings 
containing each pair of edges are 4-rings. 21 such nets 
are identified and characterized topologically. Some 
correspond to well known zeolite structures, but most 
are believed to be new. 

Introduction 

This paper continues a description and characterization 
of 4-connected nets with one kind of vertex (uninodal). 
Previous papers described nets without 4-rings or 3-rings 
(O'Keeffe & Brese, 1992) and with 3-rings (O'Keeffe, 
1992). Only nets (realizable nets) that have a conforma- 
tion with four equal edges corresponding to shortest 
distances between vertices are considered. The reader is 
referred to O'Keeffe & Brese (1992) for an account of 
how the nets were discovered, other criteria for inclusion, 

Table 1. Correspondence of the numbering of nets in this 
paper (first column) with earlier names and numbers 

The three-letter code is that of Meier & Olson (1992). 

44 #16 W*8 - O'Keeffe (1991) 
45 #13 D8 - O'Keeffe (1991) 
46 203 Faujasite FAU Smith & Bennett (1981) 
47 202 Zeolite type A LTA Smith & Bennett (1981) 
48 206 Zeolite rho RHO Smith & Bennett (1981) 
49 83 Chabazite CHA Smith (1978) 
50 205 Zeolite ZK5 KFI Smith & Bennett (1981) 
51 82 Gmelinite GME Smith (1978) 
52 23 Gismondine GIS Smith (1978) 
53 17 Merlinoite MER Smith (1978) 
55 46 - - Smith (1978) 
63 49 - - Smith (1978) 

and for definitions of terms such as 'coordination 
sequence' and 'Schlafli symbol' that are used here. That 
paper also indicates why the data presented here are of 
interest and are expected to be reasonably complete. It 
might be noted that other recent enumerations of 4- 
connected nets (e.g. Han & Smith, 1994; Boisen, Gibbs 
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Table 2. Crystallographic data for nets with unit edges 

Vert ices  are in genera l  pos i t ions  unless  speci f ied  and the or igin is chosen  at a center  in cen t rosymmet r i c  structures,  r is the number  o f  ver t ices  pe r  
unit  vo lume  and d 2 is the next-shor tes t  dis tance.  

Net Space  group  a (b, c) x, y, z r d 2 

44 Im3m 4 + 81/2 1/2a, (6 + 8u2)/a, (6 + 321/2)/a 0.302 1.414 
45 141/arnd 4, 4 3/8, 7/8, 0 0.500 1.414 
46 Fd3m 20/(18 I/2 - 3 I/2) (6 I/2 - 1)/40, 1/8, 3/8 - 2x 0.380 1.414 
47 Prn3m 1 + 81/2 24(k), y = 2/(4 + 21/2), z = y/2 0.428 1.414 
48 lm3rn 2 + 8 I/2 48(0, x = (21/2 - 1)/4 0.426 1.414 
49 R3m 4.429, 4.695 0.106, 0.441, 0.060 0.451 1.414 
50 Im3rn 2/31/2 + 8 I/2 + 2 1/2a, 1 / 4 -  x/3 I/2, 2 y -  x 0.448 1.414 
51 P63/mmc 4.418, 3.149 0.333, 0.440, 0.091 0.451 1.414 
52 141/amd 10/3,801/2/3 16(g), x = 3/20 0.483 1.414 
53 14/m_mm 4.482, 3.312 0.112, 0.269, 0.151 0.481 1.414 
54 R3m 6.0, 2.475 0.238, 0.310, 0.136 0.446 1.211 
55 Irn3m 2 + 2/31/2 16(f), x = 31/2/(4 + 481/2) 0.510 1.414 
56 P6222 3,271/2/2 1/2, I/3, 0 0.596 1.225 
57 Cccm 3.060, 2.545, 3.658 0.136, 0.110, 0.137 0.562 1.173 
58 P42/mcm 2.781, 3.729 0.090, 0.347, 0.134 0.555 1.223 
59 14122 1.950, 7.309 0.048, 0.25, 0.057 0.576 1.170 
60 P4222 1.982, 3.579 0.034, 0.25, 0.139 0.569 1.125 
61 P6222 2, 3/(4 - 121/2) 1/2, 1/4, 1/3 I/2 - 1/2 0.619 1.225 
62 P42/nnm 2.795, 3.640 0.099, 0.154, 0.134 0.563 1.193 
63 1422 2.984, 2.874 0.083, 0.222, 0.151 0.625 1.0 
64 P6222 2, 3/(4 - 12 I/2) 1/4, 0, (2 - 31/2)/3 0.619 1.225 

& Bukowinski ,  1994) have not identified any uninodal 
nets that are not in my catalog [although structures 11, 13 
and 16 of  the latter are based my #84 (O'Keeffe,  1995)]. 

In the earlier papers (O'Keeffe  & Brese, 1992; 
O'Keeffe ,  1992), an effort was made to match the nets 

Net  n 2 n 3 n 4 n 5 /16 /'17 rl 8 /'19 ill0 Pl0 
with features of  known crystal structures. Two omissions 

44 8 13 20 29 41 56 73 93 116 0.453 
in the second paper are noted here: (a) in cubic metaboric 45 8 13 21 34 52 71 90 115 147 0.555 
acid, HBO 2 (Zachariasen, 1963), the B atoms correspond 46 9 16 25 37 53 73 96 120 145 0.578 

to t h e  v e r t i c e s  o f  net #37 (with - - O - -  l i n k s  correspond- 47 9 17 28 42 60 81 105 132 162 0.640 
48 9 17 28 42 60 81 105 132 162 0.640 

ing to edges); (b) net #38 is found as the Ni arrangement 49 9 17 29 45 64 85 110 140 173 0.676 
in heazlewoodite,  Ni3S 2 (Parise, 1980). 50 9 17 29 45 64 86 112 141 173 0.680 

51 9 17 29 45 65 89 116 144 175 0.693 
Uninodal nets with more than four 4-rings meeting at a 52 9 18 32 48 67 92 120 150 185 0.725 

vertex cannot be constructed, but it should be mentioned 53 9 18 32 49 69 93 121 153 189 0.737 
that 4 6 vertices do exist in nets with more than one kind 54 9 18 31 49 73 99 129 165 203 0.780 

55 9 19 35 52 72 100 131 163 201 0.786 
of vertex. Thus, the net of  the four nearest neighbors of  56 9 18 31 49 75 101 129 165 205 0.786 
each atom in sulvanite, Cu3VS 4 (Trojer, 1966), has 57 9 18 34 56 82 112 147 187 231 0.880 

v e r t i c e s  4 2 8  4 ( C u ) ,  4 6 ( W )  a n d  4 3 6  3 ( S ) .  Here, nets w i t h  58 9 18 33 54 81 113 149 189 233 0.883 
59 9 18 36 60 86 117 153 194 240 0.917 

either four or three 4-rings meeting at a vertex are 60 9 18 36 61 89 122 160 203 252 0.954 
considered. There remain 38 uninodal nets with two 61 9 18 34 56 84 118 159 210 265 0.957 

62 9 18 35 59 89 127 169 213 265 0.988 
4-rings at each vertex and 26 uninodal nets with just one 63 9 19 39 64 97 136 171 217 271 1.027 
4-ring at each vertex. 64 9 18 36 59 89 131 180 238 304 1.068 

Descriptions of nets 

Some of the nets have been described before, and indeed 
some are familiar as the nets of  the framework of  natural 
or synthetic zeolites. Table 1 identifies such nets and 
provides a concordance with previous catalogs. Table 2 
gives crystallographic data for the nets in their 
maximum-symmetry  conformations and with unit edges. 
Where these constraints do not uniquely determine the 
coordinates of  the vertices, the conformation reported is 
one of maximum volume. Table 3 lists the sequence of  
topological neighbors (the coordination sequence) for the 
first ten shells and Table 4 gives the 'short '  and ' long '  

Table 3. Numbers of kth neighbors, n k, for nets (n I = 4 
in every case) 

The net numbering is the same as in Table 2. Pl0 is the cumulative sum 
of ni/lO00 (O'Keeffe & Brese, 1992). 

Schliifli symbols and ring statistics. Note that the nets 
have only been checked for the existence of  t ings up to 
18-rings, and that, as an N-ring is shared by N vertices, 
the number of  rings per vertex may be obtained by 
dividing the numbers in the table by N. All uninodal nets 
that I have discovered with two or more 4-rings meeting 
at a vertex contain only even rings. This is not 
necessarily the case for nets with more than one kind 
of  vertex; for example, the net of  the coesite structure, 
which has two 4-rings at each of  the two kinds of  vertex, 
contains 9-rings. 

Nets with four 4-rings at a vertex. Only two uninodal 
nets (numbers 44 and 45) with four 4-rings meeting at a 
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Table 4. Long and short Schlafli symbols and ring counts (Ni) in nets 

The net  number ing  is the same as in Table  2. Z t is the number  o f  ver t ices  in the topogica l  repeat  unit. 

Net  Z t Shor t  Long  N 4 N 6 N 8 Ni0 Ni2 Nl4 Nt6 Ni8 N24 

44 48 44.62 4.4.4.8.4.12 4 3 1 5 I 0 0 0 3 
45 16 44.62 4.4.4.12.4.12 4 3 0 0 3 0 0 0 - 
46 48 43.63 4.4.4.6.6.12 3 2 4 0 9 0 0 0 - 
47 24 43 .62 .8 4.6.4.6.4.8 3 5 1 0 8 0 0 42 - 
48 24 43 .63 4.4.4.6.8.8 3 I 2 10 0 0 0 42 - 
49 12 43.62.8 4.4.4.8.6.8 3 1 6 0 1 0 0 0 - 
50 48 43 .62.8 4.4.4.8.6.8 3 I 6 0 0 14 0 21 - 
51 24 43 .62 .8 4.4.4.8.6.8 3 1 6 0 7 0 0 0 - 
52 8 43 .62 .8 4.4.4.82 .8.8 3 0 4 0 0 0 0 0 - 
53 16 43 .62 . 8 4.4.4.82 .8.8 3 0 4 10 0 14 0 0 - 
54 12 43 .62 .8 4.4.4.86 .83 .83 3 0 18 0 2 21 4 0 - 
55 8 43 .62 .8 4.82 .4.82 .4.82 3 3 6 15 0 0 0 0 - 
56 12 43 .62.8 4.4.4.86.83 .83 3 0 18 0 0 168 0 0 - 
57 8 43.62.8 4.4.4.8.8.102 3 0 2 10 54 0 0 0 - 
58 16 43 .62 .8 4.4.4.82 .8.128 3 0 3 5 24 140 0 0 - 
59 8 43.62.8 4.4.4.1020.106.1012 3 0 0 50 0 0 0 0 - 
60 8 43.62.8 4.4.4.1018.106.1012 3 0 0 50 72 0 0 0 - 
61 12 43 .62 .8 4.4.4.8.8.102 3 0 2 10 48 0 0 0 - 
62 8 43 .62 .8 4.4.4.8.104 . 1012 3 0 1 40 48 0 0 0 - 
63 8 43.82.10 4.8.4.8.4.1012 3 3 2 50 40 0 0 0 - 
64 12 43 .62 .8 4.4.4.1024.104 . 1010  3 0 0 50 0 0 0 0 - 

vertex have been found. These have been described and 
illustrated before (O'Keeffe, 1991). Net 44 is the least 
dense uninodal net without 3-rings. If the edge length 
were 3.05,~, (appropriate for S i - -Si  distances in a 
silicate framework), the framework density would be 

Fig.  1. Net  54 p ro jec ted  on (001).  Number s  represent  e leva t ions  in 
mul t ip les  o f  c / l O 0 .  A l m o s t  ver t ical  edges  (e.g.  f rom ver t ices  at 
e leva t ion  4 5 - 8 6 )  are not  shown.  

10.6 vertices p e r  1 0 0 0 A 3 ;  this appears to be close to the 
minimum for a framework silicate (Hyde, 1994). This net 
is also one of only two [the other is net 26 (O'Keeffe, 
1992)] containing 24-rings. Accordingly, it is conjec- 
tured that 24-rings are the largest possible in realizable 
uninodal nets. 

Nets with three 4-rings at each vertex. Nets with three 
4-rings meeting at a vertex include the frameworks of 

Fig.  3. Ne t  56 

Fig.  2. Net  55 in c l inographic  projec t ion.  

in c l inograph ic  project ion,  c is ver t ical  on the page.  

Fig.  4. Net  57 in c l inograph ic  ~rojection. c is ver t ical  on the page.  
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some well known zeolite structures (numbers 46--53, 
Table 1). Attention is called to the fact that two of them 
(47 and 48) have identical coordination sequences but are 
differentiated by the long Schl~ifli symbol. The remaining 
nets do not appear to have been found in crystal 
structures so far, but 55 and 63 were described by Smith 
(1978); the others I have not found described elsewhere. 
Net 63 is only included because it is in Smith's (1978) 
catalog; in its maximum-volume form, it is 5-connected 
corresponding to square antiprisms linked by additional 

appears unlikely to be the case (Johnston & Hoffmann, 
1989). 

The remaining nets, nos. 55---62 and 64, form a new 
and closely knit family characterized by ladders (rods of 
quadrangles sharing opposite faces) running in two or 
three directions and linked together by skew quadrangles. 
They are illustrated in Figs. 3-9. The number of closely 
related possibilities with just one kind of vertex 
illustrates how daunting would be the task of system- 

edges to form a body-centered array (compare no. 55, 
which is comprised of cubes similarly linked). ~ 

Of  the new nets, no. 54 (Fig. 1) stands by itself in 
apparently not being related to other nets. Net 55 (Fig. 2) 
has been suggested as the structure of a possible 
metastable form of carbon ( 'polycubane'),  but this 

Fig. 7. Net 60 c projecti on the page. 

Fig. 5. Net 58 in clinographic projection, c is vertical on the page. l 

f 
) 

) 

Fig. 8. Nets 61 (left) and 64 in clinographic projection, c is vertical on 
the page. 

Fig. 6. Net 59 in clinographic projection, c is vertical on the page. Fig. 9. Net 62 in clinographic projection, c is vertical on the page. 
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atically enumerating nets of this type. Nets 61 and 64 
(Fig. 8) provide a nice example of a pair of nets with the 
same space group and unit-cell dimensions. 

In some of these nets, the skew quadrangles approach 
regular tetrahedra; if the tetrahedra were indeed regular, 
the nets would become 5-connected and have higher 
symmetry and higher density. This is perhaps most easily 
seen for net 60 (Fig. 7). With regular tetrahedra, the 
symmetry would be P42/mmc with a = 2, c = 2 + 21/2 
and vertices in 8 (o) 0, y, z with y = 1/4 and z = 0.1465. 
The density is 3% higher. In the conformation listed in 
Table 2, however, the next shortest distance (d 2 in Table 
2) is ca 20% longer. 

This work was supported by a grant (DMR 9120191) 
from the National Science Foundation. 
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Abstract 

X-ray diffraction from crystal surfaces and interfaces is 
described within the framework of the dynamical theory. 
The intensity distributions of specular and non-specular 
crystal truncation rods are interpreted with this dynamical 
approach. Difficulties encountered in the ordinary 
dynamical calculation for these rods are mentioned and 
the details of the numerical calculation procedure which 
overcomes the difficulties are given. The coordinates of 
dispersion surface, linear absorption coefficients and 
mode excitations of surface diffractions are calculated 
and the validity of this dynamical approach is discussed. 

1. Introduction 

Grazing-incidence X-ray diffraction (GIXD) from crystal 
surfaces and interfaces has been widely used for 
determining surface crystal structures since 1979 (Marra, 
Eisenberger & Cho, 1979). These include the structures 
of Si (111) 7 x 7 (Robinson, Waskiewicz, Fuoss, Stark 
& Johnson, 1986), Ge (111) c 2 x 8 (Feidenhans'l et al., 
1988), As/Si (100) (Jedrecy et al., 1990), Pb/Si (111) 
(Grey, Feidenhans'l, Nielsen & Johnson, 1989) and 
many others (Robinson & Tweet, 1992; Shimura & 
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Harada, 1993). Although a crystal surface is a two- 
dimensional arrangement of atoms, its relative position 
with respect to the crystal bulk involves the third 
dimension along the crystal surface normal. To probe 
this three-dimensional structure, in-plane scan and sur- 
face-normal scan are usually employed to gather the 
structural information parallel and perpendicular to the 
crystal surface, respectively. The latter, surface-normal 
scan, is sometimes called crystal-truncation-rod (CTR) 
scan in the literature (Andrews & Cowley, 1986; 
Robinson, 1986) because the scan is along the reciprocal 
rods which are the Fourier transform of a surface- 
truncated crystal in the reciprocal space (Fig. 1). This 
CTR scan is also a powerful tool to help solve interface 
structures on the atomic scale, for example, the structures 
of NiSi2/Si (111) (Robinson, Tung & Feidenhans'l, 
1988), Si/Si (111) (Robinson, Waskiewicz, Tung & 
Bohr, 1986) and SiO2/Si (111) (Kashiwagura et al., 
1987). Aside from the crystal structure determination, 
GIXD together with in situ experimental techniques also 
provides a means of studying surface order--disorder, 
melting and roughening transitions (Mochrie, Zehner, 
Ocko & Gibbs, 1990; Held, Jordan-Sweet, Horn, Mak & 
Feldman, 1989; Dosch, Mailander, Reichert, Peisl & 
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